Maximum Simulated Likelihood Estimation of Random-Effects Dynamic Probit Models with Autocorrelated Errors

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximum Simulated Likelihood Estimation of Random Effects Dynamic Probit Models with Autocorrelated Errors

This paper investigates the use of Maximum Simulated Likelihood estimation for random effects dynamic probit models with autocorrelated errors. It presents a new Stata command, redpace, for this estimator and illustrates its usage. The paper also compares the use of pseudo-random numbers and Halton sequences of quasi-random numbers for the MSL estimation of these models.

متن کامل

Estimation of Dynamic Models with Nonparametric Simulated Maximum Likelihood

We propose a simulated maximum likelihood estimator (SMLE) for general stochastic dynamic models based on nonparametric kernel methods. The method requires that, while the actual likelihood function cannot be written down, we can still simulate observations from the model. From the simulated observations, we estimate the unknown density of the model nonparametrically by kernel methods, and then...

متن کامل

Simulated Maximum Likelihood Estimation of Dynamic Discrete Choice Statistical Models

This article reports Monte Carlo results on the simulated maximum likelihood estimation of discrete panel statistical models. Among them are Markov, Generalized Poly, Renewal, and Habit Persistence Models with or without unobserved heterogeneity and serially correlated disturbances. We investigate statistical properties and computational performance of simulated maximum likelihood methods and a...

متن کامل

Multivariate probit regression using simulated maximum likelihood

We discuss the application of the GHK simulation method for maximum likelihood estimation of the multivariate probit regression model and describe and illustrate a Stata program mvprobit for this purpose.

متن کامل

Z-Tests in multinomial probit models under simulated maximum likelihood estimation: some small sample properties

This paper analyzes small sample properties of several versions of z-tests in multinomial probit models under simulated maximum likelihood estimation. OurMonte Carlo experiments show that z-tests on utility function coefficients provide more robust results than z-tests on variance covariance parameters. As expected, both the number of observations and the number of random draws in the incorpora...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Stata Journal: Promoting communications on statistics and Stata

سال: 2006

ISSN: 1536-867X,1536-8734

DOI: 10.1177/1536867x0600600207